Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 12: 929430, 2022.
Article in English | MEDLINE | ID: covidwho-2022653

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Design , Humans , SARS-CoV-2 , Virus Replication
2.
Environ Sci Pollut Res Int ; 29(46): 69341-69366, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2000065

ABSTRACT

The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.


Subject(s)
COVID-19 , Mucormycosis , Humans , Mucor , Mucormycosis/complications , Mucormycosis/epidemiology , Mucormycosis/microbiology , Pandemics , SARS-CoV-2 , Soil , Virulence Factors
3.
Evid Based Complement Alternat Med ; 2022: 5403757, 2022.
Article in English | MEDLINE | ID: covidwho-1932835

ABSTRACT

Therapeutic strategies based upon enzyme inhibition have recently gained higher attention in treating hazardous ailments. Herein, the potential use of seventy-two antimicrobial alkaloids isolated from marine-derived fungi to fight COVID-19 infection via inhibition of SARS-CoV-2 lethal virus was performed using in silico analyses. Molecular modelling was performed to assess their enzyme inhibitory potential on the main protease SARS-CoV-2 MPro, 3-chymotrypsin-like protease SARS-CoV-2 3CLpro, and papain-like protease SARS-CoV-2 PLpro using Discovery Studio 4.5. Validation of the docking experiments was done by determination of RMSD (root mean square deviation) after redocking the superimposition of the cocrystalized ligands. Results showed that gymnastatin Z (72) showed the best fitting score in SARS-CoV-2 MPro and SARS-CoV-2 3CLpr active sites with ∆G equal -34.15 and -34.28 Kcal/mol, respectively. Meanwhile, scalusamide C (62) displayed the highest fitting within SARS-CoV-2 PLpro active sites (∆G = -26.91 Kcal/mol) followed by eutypellazine M (57). ADMET/TOPKAT prediction displayed that eutypellazine M and scalusamide C showed better pharmacokinetic and pharmacodynamic properties. Gymnastatin Z is safer showing better toxicity criteria and higher rat oral LD50 and rat chronic LOAEL (lowest observed adverse effect level). Chemometric analysis using principle component analysis (PCA) based on the binding energies observed for the compounds with respect to the three tested enzymes revealed the clustering of the compounds into different clusters. Eutypellazine M, scalusamide C, and gymnastatin Z appear in one cluster due to their closeness in activity. Thus, these compounds could serve as promising SARS-CoV-2 enzymes inhibitors that could help in alleviation of COVID-19 infection. Further investigations are recommended to confirm the results of molecular modelling.

SELECTION OF CITATIONS
SEARCH DETAIL